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A central question in the study of visual short-term
memory (VSTM) has been whether its basic units are
objects or features. Most studies addressing this
question have used change detection tasks in which the
feature value before the change is highly discriminable
from the feature value after the change. This approach
assumes that memory noise is negligible, which recent
work has shown not to be the case. Here, we investigate
VSTM for orientation and color within a noisy-memory
framework, using change localization with a variable
magnitude of change. A specific consequence of the
noise is that it is necessary to model the inference
(decision) stage. We find that (a) orientation and color
have independent pools of memory resource (consistent
with classic results); (b) an irrelevant feature dimension
is either encoded but ignored during decision-making, or
encoded with low precision and taken into account
during decision-making; and (c) total resource available
in a given feature dimension is lower in the presence of
task-relevant stimuli that are neutral in that feature
dimension. We propose a framework in which feature
resource comes both in packaged and in targeted form.

Introduction

A classic question in the study of visual short-term
memory (VSTM) has been whether multi-feature
objects get stored in VSTM as whole objects or as loose
sets of features. Over the past two decades, this
question has been turned into testable hypotheses in at
least three, not mutually exclusive, ways:

Hypothesis 1 (H1): If VSTM is object-based, then
the memory of a feature should not suffer from the
addition of a second feature to the same object. In
change detection tasks, whether changes occur only in
orientation, only in color, or in either does not seem to

affect performance (Luck & Vogel, 1997; Olson &
Jiang, 2002; Vogel, Woodman, & Luck, 2001). This
finding seems to rule out that VSTM stores a fixed total
number of features (summed across all objects), but is
compatible with VSTM storing K objects regardless of
their number of features (Luck & Vogel, 1997; Vogel et
al., 2001). However, adding a second color feature to a
color-defined object does decrease performance
(Wheeler & Treisman, 2002). These findings can be
reconciled by a model in which each feature dimension
has a separate capacity (Olson & Jiang, 2002; Wheeler
& Treisman, 2002). More recently, this model has been
challenged by effects of number of features in objects
with up to six features (Hardman & Cowan, 2015;
Oberauer & Eichenberger, 2013).

Hypothesis 2 (H2): If VSTM is object-based, then
encoding a task-relevant feature of an object should
automatically cause irrelevant features of that object to
be encoded as well. This hypothesis has been tested by
examining whether the addition of an irrelevant feature
decreases performance. The finding that it does not
(Luria & Vogel, 2011; Shen, Tang, Wu, Shui, & Gao,
2013; Vogel et al., 2001; Xu, 2010; but see Hyun,
Woodman, Vogel, Hollingworth, & Luck, 2009; Yin et
al., 2012) has been interpreted as evidence that the
irrelevant feature dimension is not encoded (Luria &
Vogel, 2011; Vogel et al., 2001). However, this
interpretation relies on two implicit assumptions: that
the irrelevant feature dimension does not have its own
capacity, and that if the irrelevant feature dimension
were encoded, it would be ignored during decision-
making—a problem that to our knowledge has not
previously been noted.

Hypothesis 3 (H3): If VSTM is object-based, then
remembering two features of the same object should be
easier than of two different objects. Such an ‘‘object
benefit’’ (Jiang, Olson, & Chun, 2000) has been tested
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for by comparing a condition in which N objects each
have two features to one in which 2N objects each have
one (Lee & Chun, 2001; Olson & Jiang, 2002; Xu,
2002). Performance was found to be lower in the latter
condition, suggesting that VSTM is weakly object-
based (Olson & Jiang, 2002). However, the fact that
spatial attention is divided over more objects in the
second condition complicates this conclusion.

Across the three hypotheses, most studies designed
to test whether VSTM is object-based have employed
change detection tasks with highly discriminable
stimuli, such as primary and secondary colors. Such
stimuli were chosen with the intention of avoiding
sources of noise corrupting VSTM. The idea is that if
the magnitude of the change is large compared to the
noise, then one can regard the internal representation
of the remembered stimuli as noiseless. In recent years,
however, it has increasingly been recognized that
VSTM encoding noise can be high enough to cause
signal detection errors (Bays & Husain, 2008; Kesh-
vari, Van den Berg, & Ma, 2012, 2013; Lara & Wallis,
2012; Van den Berg, Shin, Chou, George, & Ma, 2012;
Wilken & Ma, 2004) or large estimation errors
(Fougnie, Suchow, & Alvarez, 2012; Oberauer & Lin,
2017; Van den Berg, Awh, & Ma, 2014; Van den Berg
et al., 2012; Wilken & Ma, 2004; Zhang & Luck,
2008). Whereas the exact nature of memory noise is
still subject to debate (Luck & Vogel, 2013; Ma,
Husain, & Bays, 2014; Oberauer & Lin, 2017; Sims,
2015), it is by now no longer disputed that a theory of
VSTM cannot be complete without taking into
account memory noise.

In change detection and related paradigms, a noisy-
memory viewhas twomain consequences. First, an object
is no longer in a binary ‘‘encoded’’ versus ‘‘not encoded’’
state; instead, it is encoded with a certain level of
precision, which can be near zero (Van den Berg et al.,
2014). Second, retrieval, including decision-making,
becomes an active process of probabilistic inference
(Keshvari et al., 2012; Pearson, Raskevicius, Bays,
Pertzov, & Husain, 2014; Van den Berg et al., 2012): the
observer decides which hypothesis—change or no
change—is better supported by the noisy stimulus
measurements from both displays. Differences between
conditions are no longer necessarily due to encoding only.

For these reasons, it is interesting to revisit the
hypotheses H1–H3 within the conceptual framework
of noisy short-term memories. This framework comes
naturally with the concept of memory resource (Bays
& Husain, 2008; Ma et al., 2014). More memory
resource allocated to a stimulus implies that the
measurements of that stimulus have lower noise
(therefore, higher precision), at least on average.
Using the concepts of noisy memories and resource,
we can reformulate the questions corresponding to
H1–H3 as follows.

Question 1 (Q1): Resource allocation among feature
dimensions. In a noisy-memory view, the analog of
the question ‘‘Does each feature dimension have a
separate capacity?’’ (Olson & Jiang, 2002; Wheeler &
Treisman, 2002) would be ‘‘Is memory resource
shared among feature dimensions of an object, or
does each feature dimension have its own pool of
resource?’’
Question 2 (Q2): Encoding and role in decision-
making of irrelevant features. Does an irrelevant
feature receive resource? If the answer is yes, there is
a follow-up question: In the process of deciding
which location contains the change based on noisy
memories (Keshvari et al., 2012, 2013; Ma & Huang,
2009; Wilken & Ma, 2004), does the irrelevant
feature get ignored? Distinguishing not encoded
from ‘‘encoded but ignored during decision-making’’
addresses a confound already present in the noiseless
view of VSTM (see H2 above).
Question 3 (Q3): Spatial allocation of resource. H3
predicts that dividing the features of N two-feature
objects over 2N one-feature objects decreases perfor-
mance. Here, we ask by analogy whether dividing the
features of N two-feature objects over 2N one-feature
objects decreases the amount of resource in a given
feature dimension that is available to encode the N
feature values in that dimension. In addressing this
question, we will account in the analysis for the main
effect that localizing a target (here: a change) among
2N items is intrinsically harder than among N items.

Aside from its conceptual framework, our study
differs from most of the previous literature on object-
based VSTM in the following ways:

1. We use the relatively rare paradigm of change
localization. In change detection, chance level is
0.5. In change localization with N items, chance
level is 1/N. This affords a larger performance
range, potentially allowing the predictions of
different models to separate more. We have
previously used change localization to distinguish
one-feature VSTM encoding models (Van den
Berg et al., 2012).

2. We vary the magnitude of change. Doing so allows
for a precise description of the role of memory
noise: more noise means a shallower psychometric
curve over change magnitude (Bays & Husain,
2008; Keshvari et al., 2012, 2013; Lara & Wallis,
2012; Pearson et al., 2014; Van den Berg et al.,
2012). Using highly discriminable stimuli across a
change would amount to measuring only one point
on this psychometric curve—and it is even unclear
which point. Concluding that performance at that
point is the same in two conditions leaves open the
possibility that it is different at other points.
Therefore, measuring full psychometric curves over
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change magnitude allows for somewhat stronger
conclusions on how performance is affected than
using highly discriminable stimuli.

3. In most analyses, we will use quantitative process
models to support our qualitative conclusions. We
use the term process model to indicate a model
that obtains predictions for psychometric curves
by concatenating generic and/or principled as-
sumptions about encoding (storage) and decision
(retrieval), instead of postulating a functional
form for the psychometric curves without any
justification other than goodness of fit. Quantita-
tive process models are useful because they allow
us to separate encoding from decision compo-
nents, because they predict the entire shape of the
psychometric curve in each condition rather than
only the presence of a difference between condi-
tions, and because they allow for within-subject
model comparison.

General experimental design

Throughout this paper, stimuli were colored circular
discs (we will say that these stimuli do not have an

orientation), oriented white ellipses (we will say for
convenience that these stimuli do not have a color), and
colored, oriented ellipses (we will say that these stimuli
have two feature dimensions); stimulus details are
specified below under Experiment 1.

In Experiments 1, 2, and 3, we compared the
following four conditions (Figure 1). We used only one
condition in a given session, and subjects were
instructed on the details of the condition at the start of
each session.

Condition A: One feature dimension

The trial sequence consisted of the presentation of a
fixation cross (1000 ms), the first stimulus array (100
ms), a delay period in which the fixation cross was
present (1000 ms), the second stimulus array (100 ms),
and a response screen (present until response). The
second array was identical to the first except that
exactly one object was different in its feature value
from the first array. The magnitude of the change was
drawn from a uniform distribution. Each object had an
equal probability of changing. The response screen
consisted of empty circles at the same locations as

Figure 1. Conditions in Experiments 1, 2, and 3. Subjects click on the location where a (relevant) change has occurred. (A) Orientation

trial in Condition A: orientation is the only feature dimension. (B) Condition B: stimuli have two feature dimensions and the change

occurs in either. (C) Orientation trial in Condition C: stimuli have two feature dimensions but only orientation is relevant. No changes

occur in the irrelevant feature dimension (in this case, color). (D) Orientation trial in Condition D: as C, but one or all stimuli also

change in the irrelevant feature dimension (in this case, color).
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where objects were presented in the stimulus arrays.
The task was to click on the location of the object that
had changed. After the response, feedback was
provided: the fixation cross turned green if the response
was correct and red if the response was incorrect. We
instructed subjects that their task was to localize the
change and that the change could be small or large.

Condition B: Two relevant feature dimensions

In Condition B, each object had both a task-relevant
orientation and a task-relevant color. The change
occurred in either orientation or color, with equal
probability. We instructed subjects that their task was
to localize the change in either feature dimension, and
that the change could be small or large.

Condition C: One relevant feature dimension
and one nonchanging irrelevant feature
dimension

Condition C was identical to Condition A except
that all objects also had an irrelevant feature dimen-
sion. The irrelevant feature dimension did not change
between the two arrays. We instructed subjects that
their task was to localize the change in the relevant
feature dimension, and that the change could be small
or large.

Condition D: One relevant feature dimension
and one changing irrelevant feature dimension

In Condition D, only one feature dimension was
relevant, but an object could change in the irrelevant
feature dimension. In one-change Condition D, on each
trial, one object (chosen with equal probabilities)
changed orientation and another object (independently
chosen, also with equal probabilities) changed color.
Both changes were independently drawn from uniform
distributions. By chance, both changes could occur in
the same object. One feature dimension was relevant
and the other was irrelevant; which feature dimension
was relevant remained fixed throughout a session for a
given subject. The task was to click on the location of
the object that had changed in its relevant feature
dimension. We instructed subjects that their task was to
localize the change in the relevant feature dimension,
that the change could be small or large, that one
randomly chosen object would change in its irrelevant
feature dimensions, and that by chance the same object
could change in both dimensions.

All-change Condition D was identical to one-change
Condition D, except that on each trial in the second

array, every object changed in its irrelevant feature
dimension. All changes in the irrelevant feature
dimension as well as the change in the relevant feature
dimension were independently drawn from a uniform
distribution. We instructed subjects that their task was
to localize the change in the relevant feature dimension,
that the change could be small or large, and that all
objects would change in their irrelevant feature
dimension. All-change Condition D was designed to
magnify any potential effect of the irrelevant feature
compared to one-change Condition D.

Models

Qualitative models

Combining the possible answers to Q1 and Q2
results in six models (Figure 2). In Models 1 through 3,
orientation and color share memory resource, whereas
in Models 4 through 6, orientation and color have
independent pools of resource. In Models 1 and 4, an
irrelevant feature dimension, if present, receives re-
source and is treated the same way as the relevant
feature during the decision process. In Models 2 and 5,
an irrelevant feature dimension receives resource but is
ignored during the decision process. In Models 3 and 6,
an irrelevant feature does not receive any resource.
After ruling out of these all models but one, we will
consider Q3 separately.

Quantitative models: Modeling choices

The models in Figure 2 differ in their qualitative
predictions for the four conditions. We will evaluate
these predictions using frequentist statistics. To support
these analyses, we will also fit quantitative versions of
the six models. Quantitative models allow for within-
subject model comparisons. Moreover, quantitative
process models (a) predict entire psychometric curves
across conditions, rather than only the presence or
absence of an effect of condition on accuracy; (b) allow
us to disentangle differences between conditions in
encoding precision (of primary interest) from differ-
ences between conditions in the decision process (less of
interest). The price to pay for these gains is that
additional assumptions must be made. Our main
assumptions are as follows.

� For our single-feature encoding model, we choose
the variable-precision model (Keshvari et al., 2012;
Van den Berg et al., 2012; Van den Berg et al.,
2014), in which encoding precision is itself a
random variable. Although this model is relatively
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simple and has a good track record (Ma et al.,
2014), many other models have been proposed to
describe how short-term memories are encoded in a
noisy fashion (Bays, 2014; Cappiello & Zhang,
2016; Oberauer & Lin, 2017; Sims, Jacobs, & Knill,
2012; Van den Berg et al., 2014; Zhang & Luck,
2008). The present study cannot rule those models
out, and at least qualitatively, the differences
between conditions predicted by the variable-
precision model can also be accounted for by the
other models.
� For the observer’s decision, we choose a Bayes-
optimal (ideal) observer. This decision model
described human data best in a similar change
detection task (Keshvari et al., 2012), but other,
suboptimal rules, can certainly not be ruled out.

These assumptions are generic, and the second one
could be called principled. Moreover, we will see that
models equipped with these assumptions can yield
visually good fits to the psychometric curves. Never-

theless, it is important to keep in mind that the present
work cannot and is not aimed at ruling out any
alternatives for the encoding and decision stage beyond
the aspects specified in Figure 2.

Quantitative models: One feature dimension
(Condition A)

We first focus on objects that have a single feature
dimension. We model the observer’s change localiza-
tion decisions using a Bayes-optimal model. We derived
the Bayesian decision model for change localization
previously (Van den Berg et al., 2012) but we briefly
summarize the logic here. A Bayesian model consists of
three steps: (1) the generative model (encoding model),
which describes the statistics of the variables in the
task; (2) the inference (decision-making) model, which
describes how an observer reaches a decision based on
their observations on a given trial; and (3) a calculation

Figure 2. Models of VSTM for Q1 and Q2 and their predictions for performance in different conditions. The models differ in whether

memory resource is shared or independent between feature dimensions, and whether an irrelevant feature dimension is encoded

and taken into account into decision-making. Discs show how shared (purple) or independent (blue/red) resource is divided across

feature dimensions, and the predicted effect on performance (Perf.) relative to performance in Condition A. Below the table, we

indicate which conditions are compared in which experiments.

Journal of Vision (2017) 17(9):12, 1–19 Shin & Ma 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936403/ on 08/24/2017



of response probabilities (i.e., how often the model
predicts the observer to make each possible response on
a given trial). After describing these three steps for
single-feature objects, we will describe the modifica-
tions necessary for two-feature objects.

Step 1: Encoding

The stimulus arrays before and after the change
both contain N objects. We denote the vector of
stimuli in the first array by h¼ (h1, . . . , hN). Every hi is
independently drawn from a uniform distribution. In
going from the first to the second stimulus array,
exactly one object (drawn with equal probabilities)
changes its value; we denote the location where this
happens by L. The magnitude of the change, denoted
by D, is drawn from a uniform distribution. The vector
of stimuli in the second array is denoted by u¼ (u1, . . .
, uN). Since the change occurs in one object, u and h
are identical except for the Lth entry, where uL ¼ hL
þ D.

When the stimulus in the first array is hi, the observer
has a noisy measurement (memory) of this stimulus,
which we denote by xi. Similarly, we denote the noisy
measurement of ui by yi. We denote the measurement
vectors by x ¼ (x1, . . . , xN), and y ¼ (y1, . . . , yN). We
assume that the noise corrupting the measurements is
independent across arrays and locations. Since orien-
tation and color are circular variables in our experi-
mental design, we assume that xi and yi follow Von
Mises distributions (with orientation rescaled to have
the range [0,2p]):

p xijhið Þ ¼ 1

2pI0 jx;i

� � ejx;i cos xi�hið Þ;

p yijuið Þ ¼ 1

2pI0 jy;i

� � ejy;i cos yi�uið Þ: ð1Þ

Here, I0 is the modified Bessel function of the first
kind of order zero (Abramowitz & Stegun, 1972), and
jx,i and jy,i are called concentration parameters,
which we will assume to be stochastic themselves (see
below). Both the Von Mises and the independence
assumptions are simplifications, but they fit the
present data well. Moreover, most of our qualitative
conclusions are supported by model-free statistics and
are unlikely to be sensitive to changes in model
assumptions.

From resource to encoding precision

Wemodeled the encoding precision of a feature of an
object as the product of the amount of attentional/
memory resource allocated to that object and that
feature (which could be called a ‘‘top-down’’ factor),
and a ‘‘bottom-up’’ factor representing low-level

variables such as stimulus contrast and the width of the
feature tuning curves.

Per the variable-precision model (Fougnie et al.,
2012; Van den Berg et al., 2012; Van den Berg et al.,
2014), we allow the top-down resource factor at the ith
location in a stimulus array, denoted by J’array,i, to be
variable across arrays (first and second), locations
(objects), and trials.

Specifically, we model J’array,i as drawn indepen-
dently across arrays, locations i, and trials from a
gamma distribution with mean �J0 and scale parameter
s; for this stochastic process, we will use the notation

�J 0; sð Þ ! J 0
array;i

Then, J’array,i is multiplied by a bottom-up factor a to
yield the value of encoding precision at the ith location
in a given array:

Jarray;i ¼ aJ 0
array;i: ð2Þ

We convert the drawn precision values to concentration
parameters jarray,i through

Jarray;i ¼ jarray;i

I1 jarray;i

� �
I0 jarray;i

� � ð3Þ

where I1 is the modified Bessel function of the first kind
of order one (Abramowitz & Stegun, 1972). This
relationship, which is nearly linear, follows from the
interpretation of precision as Fisher information (Van
den Berg et al., 2012; Van den Berg et al., 2014).

Step 2: Inference

We denote by dL the likelihood ratio, based on xL
and yL, that a change occurred at the Lth location,
disregarding all other locations. It turns out that an
accuracy-maximizing observer will report the location
for which dL is highest (see Appendix A).

Step 3: Response probabilities

In our model, each trial in a single-feature condition
is characterized completely by its change magnitude D;
the values of stimuli h and u do not matter otherwise.
Moreover, the observer’s response is completely
characterized by whether it is correct or not; all
incorrect responses are equivalent. For a given
parameter combination, x, and a given change
magnitude D, we calculated the probability of a
correct response, denoted by p(correctjD, x), through
Monte Carlo simulation. This entailed the following.
We generated 1,280 samples of Jx,i and Jy,i for the first
and second stimulus array according to the process
described under Step 1. We used these values to
compute concentration parameters jx,i and jy,i ac-
cording to Equation 3, and we drew measurement
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vectors x and y from Von Mises distributions with
those concentration parameters, respectively. Those
Von Mises distributions all had mean 0 except that
one element of y was drawn from a Von Mises
distribution with mean D. For each of the 1,280
combinations of jx, jy, x, and y thus drawn, we
evaluated the decision rule. Tallying correct responses
across these draws yielded an estimate of the
probability of a correct localization response for the
given parameter combination and the given change
magnitude. We used these probabilities for model
fitting.

Quantitative models: Two feature dimensions
(Conditions B, C, and D)

We now describe the modifications necessary for
objects with two features, say orientation and color.

Step 1: Encoding

The stimuli on a given trial are represented by a
quadruplet (hori, hcol, uori, ucol). In Condition B, both
features are relevant, and a change occurs in one
feature of one object. In Conditions C and D, there is a
relevant and an irrelevant feature. In Condition C, the
irrelevant feature, denoted by a subscript ‘‘irr’’, never
changes, and thus, uirr ¼ hirr. In Condition D, the
irrelevant feature might change. In the one-change
condition, an irrelevant change of magnitude Dirr is
introduced at the Lth location: uL,irr ¼ hL,irr þ Dirr. In
the all-change condition, an irrelevant change of
magnitude is introduced at every location: uirr ¼ hirr þ
Dirr, where Dirr ¼ (D1,irr . . . , DN,irr), and Di,irr is
independently drawn from a uniform distribution for
every i.

Orientation precision and color precision will be
drawn from their respective distributions, described
below for shared-resource models (Models 1 to 3) and
independent-resource models (Models 4 to 6). The
stimuli and the precisions determine the distributions
from which orientation and color measurements, (xori,
xcol, yori, ycol), are drawn. We assume that the noise
corrupting the orientation and color measurements is
independent across arrays, locations, and features
(Fougnie & Alvarez, 2011).

Shared-resource models (Models 1, 2, and 3)

In the shared-resource models, orientation and color
share a common pool of resource. Specifically, we
assume that the sum of the mean resource of
orientation and that of color is equal to a fixed value �J0.
Thus, we let the mean orientation resource be q�J0, and
that of color 1� qð Þ�J0, where 0 , q , 1. We assume

independent variability for orientation and color:

Orientation: q�J 0; s0ori

� �
! J 0

ori;

Color: 1� qð Þ�J 0; s0col

� �
! J 0

col;

where s’ori and s’col are the scale parameters for
orientation and color, respectively. We multiply the
drawn resource values J’ori and J’col by bottom-up
factors aori and acol to obtain Jori and Jcol, respectively.
This process can be simplified as

Orientation: q�Jori; sorið Þ ! Jori;

Color: 1� qð Þ�Jcol; scolð Þ ! Jcol;

where �Jori ¼ �J 0
oriaori, sori ¼ s0oriaori, �Jcol ¼ �J 0

colacol, and
scol ¼ s0colacol. Within the category of shared-resource
models, we consider two scenarios for resource sharing:
sharing across all features (Models 1 and 2), or only
across relevant features (Model 3). In the former
scenario, an irrelevant feature takes resource from the
common pool. All shared-resource models have five
parameters: �Jori, �Jcol, sori, scol, and q.

Independent-resource models (Models 4, 5, and 6)

In the independent-resource models, each feature has
its own resource pool. Thus, whether an irrelevant
feature is encoded or not does not affect the mean
precision of the relevant features. Except for the
sharing of resource, the independent-resource models
are identical to the shared-resource models. Thus, the
precision of relevant orientation and color follow:

Orientation: �Jori; sorið Þ ! Jori;

Color: �Jcol; scolð Þ ! Jcol:

In Models 4 and 5, irrelevant features have a pool of
resource, whereas in Model 6, they do not. In Models
4 and 5, we do not assume that the amount of resource
for the irrelevant feature is the same as when that
feature is relevant. Instead, we allow it to be a
proportion. In Model 5, those proportions do not
need to be explicitly modeled, since the irrelevant
feature is not taken into account. In Model 4,
however, we do need to model these proportions
separately for orientation and color, giving rise to
parameters qori and qcol. In Model 4, mean precision
for irrelevant orientation is then qori

�Jori , and mean
precision for irrelevant color is qcol

�Jcol; we assume that
sori and scol are identical to when the features are
relevant.

All independent-resource models have the four
parameters �Jori, �Jcol, sori, and scol, and Model 4 has two
more, qori and qcol.
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Step 2: Inference

In Condition B (two relevant feature dimensions),
the decision variable turns out to be simply the
average of the likelihood ratios for the individual
features (see Appendix A). The observer reports the
location for which this average is highest. In Condi-
tions C and D (one relevant, one irrelevant feature
dimension), if the irrelevant feature dimension is
ignored during decision-making, the decision rule is as
in Condition A, whereas if it is taken into account, we
assume that the decision rule is the same as in
Condition B.

Step 3: Response probabilities

For each model for two-feature objects, we calcu-
lated the response probabilities as follows. Each two-
feature trial is characterized by change magnitude
vectors of orientation and color, denoted by Dori and
Dcol, respectively, which depend on the condition (e.g.,
in Condition C, one of the vectors is the zero vector,
whereas in Condition D, neither is). In each experi-
mental condition, we estimated the model observer’s
probability of a correct response, p(correctjDori, Dcol,
x), through Monte Carlo simulations with 1,280
samples of jori,x, jori,y, xori, yori, jcol,x, jcol,y, xcol, and
yori.

Model fitting

For here and elsewhere, we used maximum-likeli-
hood estimation for model fitting. The likelihood of a
parameter combination x is L(x)¼ p(datajx). We
maximized this function over x, which is equivalent to
maximizing its logarithm. Assuming that all trials are
conditionally independent, the log-likelihood function
for a given condition is

logL xð Þ ¼ log p datajxð Þ

¼ log
YNtrials

t¼1
p correctnesstjDori;t;Dcol;t;x
� �

¼
XNtrials

t¼1
log p correctnesstjDori;t;Dcol;t;x

� �
;

where Ntrials is the number of trials in the condition (in
Condition A, only one of either Dori,t and Dcol,t exists).
We fitted all conditions within an experiment simulta-
neously, and thus the log-likelihood gets summed
across all conditions. For maximizing the resulting
total log likelihood, we used the genetic algorithm
(‘‘ga’’) in the Global Optimization Toolbox in MAT-
LAB, with 64 individuals and 64 generations.

Overview of experiments

In the Introduction, we formulated three central
questions, Q1 through Q3. Models 1 through 6 capture
possible answers to questions Q1 and Q2. In Experi-
ment 1, we test and rule out Models 1 and 2. In
Experiment 2, we test and rule out Model 3. To rule out
Model 6, we refer to a published study using a delayed-
estimation task. In Experiment 3, we attempt unsuc-
cessfully to distinguish Models 4 and 5. Finally, in
Experiment 4, we answer question Q3.

Experiment 1: Ruling out Models 1 and 2

Experiment 1 tests Models 1 and 2, in which the
irrelevant feature receives a portion of a shared
resource. In this experiment, subjects were tested on
Conditions A (one feature) and C (a relevant and a
nonchanging irrelevant feature) using change localiza-
tion tasks (Figure 1). Models 1 and 2 both postulate
that memory resource is shared between the features in
Condition C. Therefore, they predict lower perfor-
mance in Condition C than in Condition A. Moreover,
in Model 1, the irrelevant feature is taken into account
in the decision process, thereby adding noise and
further reducing performance (Figure 2).

Methods

Stimuli and subjects: Stimuli were displayed on a 19 00

LCD monitor at a viewing distance of approximately
60 cm. Stimuli were presented on a mid-level gray
background of luminance 33.1 cd/m2. Stimuli were
equally spaced along an imaginary circle of radius 7
degrees of visual angle (deg) around fixation (calculated
assuming a viewing distance of 60 cm), at angles [45þ (I
� 1)/N 3 360]8, where i ¼ 1, . . . , N, and N¼ 4. All
experiments were programmed using Psychophysics
Toolbox in MATLAB (Brainard, 1997; Pelli, 1981).

An orientation-only stimulus was a white ellipse of
luminance of 95.7 cd/m2 with minor and major axes of
0.41 and 0.94 degrees of visual angle (deg), respectively.
A color-only stimulus was a disc with a diameter of
0.62 deg, with color drawn from 360 values uniformly
distributed along a circle in the fixed-L* plane of CIE
1976 (L*, a*, b*) color space corresponding to a
luminance of 95.7 cd/m2, with center (a*, b*)¼ (12, 13)
and radius 60. A two-feature stimulus was a colored
ellipse.

Eight subjects (age range 23–30 years), including
author H. S., participated. Besides the author, all
subjects were naı̈ve to the goal of the experiment. All
subjects gave informed consent. The experimental
protocol adhered to the Declaration of Helsinki and
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was approved by the Institutional Review Board of
Baylor College of Medicine.
Procedure: Experiment 1 consisted of four sessions, run
on different days: two sessions of Condition A (a
relevant-orientation session and a relevant-color ses-
sion) and two sessions of Condition C (a relevant-
orientation session and a relevant-color session). The
order of the sessions was random for each subject. Each
session consisted of four blocks of 150 trials. Hence,
each subject completed 4 3 4 3 150 ¼ 2,400 trials in
total. At the beginning of each session, subjects
completed 10 practice trials. Each session lasted about
45 min. Set size was 4.

Results

Psychometric curves are shown in Figure 3. For
orientation, a two-variable logistic regression of accu-
racy against change magnitude (a continuous variable)
and condition (binary) revealed a significant effect of
change magnitude, b¼ 0.035 6 0.002; t test on b
values: t(7)¼6.89, p , 0.001, but no significant effect of
condition, b¼�0.018 6 0.029, t(7)¼�0.21, p ¼ 0.84.
For color, we similarly found a significant effect of
change magnitude, b¼ 0.035 6 0.002, t(7)¼ 7.23, p ,

0.001, and no significant effect of condition, b¼�0.128
6 0.028, t(7)¼�1.53, p ¼ 0.17. Since Models 1 and 2
predict a significant effect of condition, we find no
evidence for Models 1 or 2.

Since a frequentist test cannot prove a null
hypothesis, we also performed formal model compar-
ison. We compared Models 1 and 2 against Model 5/6
(Models 5 and 6 make the same prediction for this
experiment). For every individual subject, the Akaike
information criterion (AIC) of Models 1 and 2 are
higher than that of Models 5/6, on average by 210 6 13
and 154 6 11 (M 6 SEM), respectively. This confirms
that we can reject Models 1 and 2.

Experiment 2: Ruling out Model 3

So far, we have ruled out Models 1 and 2. Next, we
test Model 3, in which orientation and color share a
memory resource but the irrelevant feature is not
encoded. To this end, we compare Conditions B (two
relevant features, one of which changes) and C (a
relevant and a nonchanging irrelevant feature; Figure
1).

Methods

Stimuli and subjects: Stimuli were identical to those in
Experiment 1. Eight subjects (including one author)
participated and the age range was between 23 and 30
years.
Procedure: Experiment 2 consisted of four sessions, run
on different days: two sessions of Condition B
(statistically identical to each other) and two sessions of

Figure 3. Experiment 1. Proportion correct as a function of change magnitude (eight subjects), with model fits (shaded areas: M 6

SEM). Performance was indistinguishable between Conditions A and C, in accordance with Model 5/6 but not with Models 1 and 2.
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Condition C (of which one was a relevant-orientation
session and one a relevant-color session). Set size was 4.
We conducted the same experiment at a higher set size
(N ¼ 8). Otherwise, Experiment 2 was the same as
Experiment 1.

Results

Psychometric curves are shown in Figure 4. For
orientation, a two-variable logistic regression of accu-
racy against change magnitude (a continuous variable)
and condition (binary) revealed a significant effect of
change magnitude, b¼ 0.039 6 0.001; t test on b
values: t(7)¼9.01, p , 0.001, but no significant effect of
condition, b¼ 0.025 6 0.029, t(7)¼ 0.28, p¼ 0.79. For
color, we similarly found a significant effect of change
magnitude, b ¼ 0.037 6 0.002, t(7) ¼ 8.00, p , 0.001,
and no significant effect of condition, b¼�0.022 6
0.032, t(7) ¼�0.23, p¼ 0.83.

Model 3 postulates that resource is shared between
orientation and color, and that an irrelevant feature, if
present, is not encoded. It predicts a difference between
Conditions B and C. Thus, we find no evidence for
Model 3. In model comparison, we found that for every
individual subject, the AIC of Model 3 is higher than
that of Models 5/6, on average by 161 6 32. We
confirmed these findings in a separate experiment (5
subjects) that was identical except that set size was 8
(AIC difference: 81 6 19; Appendix B). Therefore, we
can reject Model 3.

Answer to Q1

Taking the results of Experiments 1 and 2 together,
we can rule out that, for our stimuli, memory resource
is shared between orientation and color. These findings

are consistent with classic change detection studies
(Luck & Vogel, 1997; Olson & Jiang, 2002; Vogel et al.,
2001). Another study that worked within the noisy-
memory framework (Fougnie, Asplund, & Marois,
2010) obtained somewhat mixed results: In a delayed-
estimation task, color memories were somewhat noisier
when both orientation and color had to be remembered
than when only color had to be remembered. However,
orientation memory did not suffer such a cost, but it
did when orientation stimuli were not chosen inde-
pendently of each other within a display. A change-
detection experiment aimed at addressing the same
question was also inconclusive: A cost for remembering
two features over one was observed when the change
was small but not when it was large (Fougnie et al.,
2010). By contrast, our results are consistent between
features and across change magnitudes.

Ruling out Model 6

We are now left with the three independent-resource
models (Models 4, 5, and 6). Of these, Model 6
distinguishes itself by the assumption that the irrelevant
feature is not encoded. Unfortunately, in change
detection and change localization, it is fundamentally
impossible to distinguish between ‘‘not encoded’’ and
‘‘encoded but not used.’’ This same problem applies to
classic change detection studies that claimed that the
irrelevant feature is not encoded (Luria & Vogel, 2011;
Vogel et al., 2001). Therefore, we have to probe the
encoding using a more direct paradigm.

We did this in recent work (Shin & Ma, 2016) by
using a delayed-estimation task (Blake, Cepeda, &
Hiris, 1997; Nilsson & Nelson, 1981; Wilken & Ma,
2004) on the Amazon Mechanical Turk online data

Figure 4. Experiment 2. Proportion correct as a function of change magnitude (eight subjects), with model fits (shaded areas: M 6

SEM). Performance was indistinguishable between Conditions B and C, in accordance with Model 5/6 but not with Model 3.
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collection platform. On each trial, the stimulus was a
colored ellipse, with orientation and color indepen-
dently drawn from their respective uniform distribu-
tions. After a delay, subjects (n¼ 600) were asked to
recall one of the feature values. The subject’s response
is taken to be a proxy of their memory of the stimulus
and thus, the task has only a minimal decision-making
component. In the first 30 trials, the task was to recall
the value of the relevant feature; across these trials,
which feature was relevant was kept fixed. On the
surprise 31st trial, an on-screen message instructed
subjects to recall the value of the irrelevant feature of
the stimulus that they just saw. Model 6 predicts that
subjects will be guessing on the surprise trial and that
their estimation errors will be distributed uniformly.
We found that for both orientation and color, the error
distribution on irrelevant-feature trials was not uniform
(Figure 5). This indicates that subjects do encode the
irrelevant feature and rules out Model 6. However, the
quality of encoding of the irrelevant feature was rather
poor: The inverse of the square of the circular standard
deviation when orientation was irrelevant was only
3.8% of the same quantity when orientation was
relevant, and for color, that ratio was 20.4%.

By contrast, in a recent study, the proportion of
participants responding correctly on a surprise trial
that required identification of a previously irrelevant
color was not significantly different from chance (Chen
& Wyble, 2015). Potential reasons why weak encoding
was not detected by this study are that the number of
subjects was only 22 (we had 600 in our study), and
they used a four-choice paradigm rather than the more
informative continuous-estimation paradigm.

Woodman and Vogel (2008) asked whether irrele-
vant information was represented in VSTM by
comparing the amplitude of the component of the
event-related potential known as the contralateral delay
activity between conditions in which only color, only
orientation, or both were relevant. They found an effect
of condition, suggesting that relevance affected the

strength of encoding. However, this result does not rule
out that irrelevant features are weakly encoded.

Our finding can be contrasted with a study that
found that the color of an irrelevant stimulus was
reported incorrectly by 18% of participants (Eitam,
Yeshurun, & Hassan, 2013). Despite the title of their
paper (‘‘Blinded by irrelevance’’), this means that the
irrelevant color was reported correctly by the vast
majority of participants, suggesting strong encoding.
However, presentation time was much longer (500 ms)
and relevance was introduced by a verbal manipulation
(‘‘concentrate on the inner circle’’), which might be less
effective than reinforced task demands; also, both
features were colors.

Experiment 3: Comparing Models 4 and 5

Two models remain: Models 4 and 5. In both
models, the irrelevant feature is encoded (although
potentially with only a fraction of the amount of
resource allocated when that feature is relevant), but in
Model 4, it is taken into account in decision-making,
whereas in Model 5, it is ignored during decision-
making. We conducted Experiment 3 to distinguish
between these possibilities. In Experiment 3, we
followed the concept of Hyun et al. (2009) and
introduced changes in the irrelevant feature. We tested
subjects on Condition C (a relevant and a nonchanging
irrelevant feature) and Condition D, in which the value
of the irrelevant feature of an object changed.

Methods

Stimuli and subjects: Stimuli were identical to those of
Experiment 1. Five subjects (including one author)
participated, and the age range was between 23 and 30
years.

Figure 5. Results from Shin and Ma (2016). The task was delayed estimation. In each experiment, 600 subjects each performed 30

relevant-feature trials and one irrelevant-feature trial. Thus, the relevant-feature histograms are based on 18,000 trials and the

irrelevant-feature histograms on 600 trials. (A) Orientation was relevant and color irrelevant. Both distributions are significantly

different from uniform. (B) Color was relevant and orientation was irrelevant. Both distributions are significantly different from

uniform.
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Procedure: Experiment 3 consisted of six sessions, all
including a relevant-orientation session and a relevant
color session: two sessions of no-change Condition C,
two sessions of one-change Condition D, and two
sessions of all-change Condition D. Otherwise, Exper-
iment 3 was the same as Experiment 1.

Results

Psychometric curves are shown in Figure 6. Since we
have three conditions, we perform logistic regression of
accuracy against change magnitude, a dummy variable
for Condition C, and a dummy variable for one-change
Condition D. For orientation, this revealed a signifi-
cant effect of change magnitude, b ¼ 0.044 6 0.002; t
test on b values: t(4) ¼ 7.58, p ¼ 0.002; no significant
difference between Condition C and the other condi-
tions, b¼�0.066 6 0.044, t(4)¼�0.60, p ¼ 0.58); and
no significant difference between one-change Condition
D and the other conditions, b ¼ 0.034 6 0.036, t(4) ¼
0.37, p ¼ 0.73. For color, we similarly found a
significant effect of change magnitude, b ¼ 0.041 6
0.003, t(4) ¼ 6.30, p ¼ 0.003; no significant difference
between Condition C and the other conditions, b ¼
�0.050 6 0.056, t(4)¼�0.03, p¼ 0.98; and no
significant difference between one-change Condition D
and the other conditions, b ¼�0.042 6 0.040, t(4)¼
�0.42, p ¼ 0.70. The absence of an effect of an (either
changing or nonchanging) irrelevant feature on per-
formance is consistent with most change detection
studies that did not vary change magnitude (Luria &
Vogel, 2011; Shen et al., 2013; Vogel et al., 2001; Xu,
2010). It is inconsistent with (Hyun et al., 2009), and we
do not know why.

Models 4 and 5 agree that the irrelevant feature is
encoded, but differ in whether it is taken into account

in decision-making. Model 5 predicts that performance
in all three conditions is identical, while Model 4
predicts that any change in the irrelevant feature
decreases performance, and the more objects change in
their irrelevant feature, the greater the decrease.
Therefore, Model 4 predicts that performance is lower
in one-change Condition D than in Condition C, and
even lower in all-change Condition D. Thus, the logistic
regression does not provide any evidence for Model 4.

However, it is possible that the irrelevant feature is
encoded with low precision, as suggested by the
Amazon Turk experiment; the logistic regression might
not be able to detect an effect of condition on
performance. Therefore, we conduct formal model
comparison. We find that the AIC of Model 4 is higher
than of Model 5 by 37 6 23, reflecting substantial
intersubject differences. In Model 4, we estimate the
parameter qori, which represents the precision with
which orientation is encoded when irrelevant as a
proportion of the precision with which it is encoded
when relevant, as 12.9% 6 3.3% (t¼ 3.88, p¼ 0.02). We
estimated the analogous parameter for color, qcol, as
11.6% 6 8.4% (t¼ 1.38, p¼ 0.24). Therefore, we cannot
state conclusively whether the irrelevant feature is
taken into account, but if it is, it is encoded with
comparatively low precision and therefore has little
effect on the decision.

Answer to Q2

Experiments 1 through 3 narrow the possible models
down to Models 4 and 5: The irrelevant feature
dimension is encoded but either ignored, or encoded
with such low precision that it barely affects perfor-
mance.

Figure 6. Experiment 3. Proportion correct as a function of change magnitude (five subjects), with model fits (shaded areas: M 6

SEM). Performance was indistinguishable between Conditions C and D, but both Model 4 and Model 5 fit well.
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Experiment 4

The remaining question, Q3, is whether dividing the
features of N two-feature objects over 2N single-feature
objects decreases the amount of resource in a given
feature dimension that is available to encode the N
feature values in that dimension. A possible mechanism
for such a decrease would be that some amount of
resource ‘‘leaks’’ to the N ‘‘distractor’’ objects that do
not have that feature dimension but are task-relevant
because of their other feature dimension. This question
is orthogonal to Q1 and Q2, and independent of the
models considered so far. We examined Q3 in
Experiment 4, using three conditions that parallel those
in Olson and Jiang (2002).

Methods

Stimuli and subjects: Stimuli are identical to those of
Experiment 1. Five subjects (including one author)
participated, with an age range of 26–30 years.
Conditions and procedure: Experiment 4 consisted of
two together-N, two separate, and two together-2N
sessions (Figure 7A). Each session was run on different
days. The order of the sessions was random for each
subject. Each session consisted of four blocks of 150
trials. Hence, each subject completed 6 3 4 3 150¼
3,600 trials in total. In the together-N condition, each
of the four objects had both orientation and color, and
the change had occurred with equal probabilities in

either feature (this is the same as Condition B before).
In the separate condition, the stimuli were four discs
with colors independently drawn from a uniform
distribution and four gray ellipses with orientations
independently drawn from a uniform distribution, for a
total of eight objects. The together-2N condition was
identical to the together-N condition except that set size
was 8.

Models

We consider two models, both of them variants of
Model 5 (Figure 7B); since Models 4 and 5 are in
practice indistinguishable, we expect the same results
under Model 4. In the no-leak model, the entire amount
of resource in a given feature dimension is distributed
to relevant locations (i.e. to objects that have that
feature dimension). In the leak model, only a portion of
the resource is distributed to relevant locations.

In both models, we use the assumptions about
encoding precision and decision-making of Model 5:
Each feature has its own resource, and irrelevant
features are encoded but ignored in decision-making.
Each model makes predictions for three experimental
conditions: together-N (identical to Condition B),
separate, and together-2N. The first two conditions
have N objects, and the last has 2N objects. To fit the
data from all conditions simultaneously, we model
mean precision as

�JN¼1
N , where N is set size and �JN¼1 is

mean precision at set size 1.

Figure 7. Experiment 4. (A) Trial procedure. A change occurred either in orientation or color. Subjects clicked on the location where

the change occurred. The three conditions differed in set size (4 or 8) and the number of features per object (1 or 2). (B) Psychometric

curves and model predictions. The no-leak model (top) fits better than the leak model (bottom).
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No-leak model: The no-leak model predicts the same
behavior in the together-N condition as in Condition B.
For the separate condition, per feature, the entire
amount of memory resource is assigned only to the
relevant locations (N ¼ 4). We have eight decision
variables: four from orientation and four from color.
This is comparable to a change localization task with
eight one-feature objects, although here there are four
colored objects and four orientation objects. Finally,
the model’s predictions for the together-2N condition
are identical to those for the together-N, except that
encoding precision is lower because N¼ 8. The no-leak
model has four parameters: �Jori,�Jcol, sori, scol.
Leak model The leak model is identical to the no-leak
model except that in the separate condition, per feature,
some amount of resource ‘‘leaks away’’ from relevant
objects, which reduces the mean precision for that
feature in those objects to 1� rð Þ �JN¼1

N , where r is a
feature-specific leak parameter (0 , r , 1), and N¼ 4.
The model predictions for the together-N and together-
2N conditions are identical to those of the no-leak
model. The leak model has six parameters: �Jori,�Jcol, sori,
scol, rori, and rcol.

Results

Psychometric curves are shown in Figure 7B.
Performance was higher in the together-N condition
than in the separate condition, and higher in the
separate condition than in the together-2N condition.
For orientation, a two-way repeated-measures AN-
OVA shows a significant main effect of change
magnitude, F(8, 32) ¼ 62.14, p , 0.001; a significant
main effect of condition, F(2, 8) ¼ 82.92, p , 0.001;
and significant interaction, F(16, 64)¼ 5.02, p , 0.001.
This is consistent for color: respectively, F(8, 32) ¼
70.13, p , 0.001; F(2, 8)¼82.92, p , 0.001; F(16, 64)¼
2.13, p ¼ 0.02. However, this qualitative pattern of
results can be predicted both by the leak and the no-
leak models. This is easiest to understand from the
fact that in the separate condition, there are eight
instead of four locations, and therefore chance
performance for change localization is lower, even if
there is no leak. However, in the leak model, the gap
between the together-N and separate conditions is
expected to be larger. To make this concrete, we
implemented the leak model by postulating that a
fixed proportion of a feature’s resource is leaked. We
find that for every individual subject, the AIC of the
no-leak model is higher than of the leak model, on
average by 62 6 17. We estimate that 38 6 13% of
orientation resource and 21 6 5% of color resource is
leaked. However, a model in which we enforce the
same leak rate for both features fits nearly equally well
compared to the leak model with independent leak per

feature (AIC difference: 1.9 6 1.6) and this leak rate is
estimated at 31 6 4%.

Answer to Q3

We found that resource for a given feature dimension
is lower in the presence of task-relevant distractors,
stimuli that do not have that feature dimension. One
possible mechanism is that feature resource leaks to
those distractors. Both the finding and the possible
mechanism are consistent with a recent delayed-estima-
tion study (Fougnie et al., 2010), as well as with older
change detection studies (Lee & Chun, 2001; Olson &
Jiang, 2002); however, of these, only the latter included a
together-2N condition. The difference in performance
between the separate and together-2N conditions
indicates that separate is not simply a special case of a
condition with double the set size as in together-N. This
confirms that in the separate condition, although feature
memory resource might ‘‘leak,’’ it is still far from being
equally allocated to all objects regardless of relevance.

Discussion

The binary question, ‘‘Is VSTM object-based or
feature-based?’’ has always been multifaceted. Here, we
performed a series of experiments to disentangle these
facets within a noise- or resource-based framework.
Our main conclusions are: (Q1) Color and orientation
have independent pools of resource; (Q2) An irrelevant
feature is encoded, but with much lower precision than
when the same feature is relevant, and it is not clear
whether it is taken into account during decision-
making; (Q3) Resource allocated to objects that have a
given feature dimension is lower in the presence of task-
relevant objects that do not have that feature dimen-
sion, suggesting that some amount of resource leaks to
the latter objects.

Our answer to Q1 is puzzling in light of recent
studies that found that change detection accuracy
decreased with the number of features (Hardman &
Cowan, 2015; Oberauer & Eichenberger, 2013).
Several potential explanations for these discrepancies
come to mind: (a) The number of feature dimensions:
we used only two feature dimensions, whereas those
studies used up to six dimensions. It is possible that
resource pools are independent only when the number
of features is low. (b) The identities of the features:
aside from orientation and color, Oberauer and
Eichenberger (2013) also used thickness, frequency,
shape, and size, and Hardman and Cowan (2015) also
used length, and presence of a gap; it is possible that
certain feature pairs (for example pairs of spatial
features) share resource, even if color and orientation
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do not. (c) In a noisy-memory framework, the decision
stage might be a confound. We draw a parallel with
visual search, in which an additional memory feature
would correspond to an additional distractor, and
independent resource pools would correspond to
precision per stimulus being independent of the
number of stimuli. In noise-based visual search
models, adding distractors reduces accuracy on whole-
array detection of a single target even if encoding
precision per stimulus is independent of the number of
stimuli (Eckstein, 1998; Nolte & Jaarsma, 1967;
Verghese, 2001). The reason is that the noise from the
distractors increasingly ‘‘drowns out’’ the target
signal. In the present study, we avoided this pitfall by
using appropriately different decision rules in Condi-
tion A (single feature) and Condition B (two relevant
features) in the models. Further work is needed to
distinguish between these possibilities.

The question arises whether an overarching
framework for multi-feature VSTM can unify our
findings and those of others. Brady, Konkle, and
Alvarez (2011) have suggested that the unit of VSTM
is a ‘‘hierarchically structured feature bundle’’ (p. 7).
The hierarchy consists of two levels: at the bottom
level, each feature can be stored or forgotten
independently. At the top level, they are integrated
into a ‘‘bundle.’’ Here, we propose a conceptually
related but different framework (Figure 8A). Each
feature has an independent pool of VSTM resource.
Some of the resource for a given feature gets placed
into multifeature packages, which are then distributed
across all objects, while the rest gets allocated in a
targeted manner to only the objects for which that

feature is relevant (we use the term package for
resources, in contrast to Brady et al.’s [2011] term
bundle for features). Within the multifeature package,
resource remains feature-specific, and if the object
does not have one of the features, the corresponding
resource from the package ends up being wasted.
Finally, the brain utilizes a smart decoder, in the sense
that the signal arising from resource being allocated
to an irrelevant feature dimension can be ignored
during decision-making.

This framework can account for all our findings as
well as some others (Fougnie et al., 2010; Marshall &
Bays, 2013; Figure 8B). In Experiments 1 and 2, the
amounts of packaged and targeted resource received by
each feature of each object are the same across
conditions, explaining the identical performance. Ex-
periment 3 establishes the smartness of the decoder. Our
recent study (Shin &Ma, 2016) suggests that the amount
of packaged resource is the same regardless of whether a
feature is relevant or irrelevant, but in the latter case, the
feature does not receive targeted resource and perfor-
mance is lower. In Experiment 4, precision in the
separate condition is lower than in the together-N’’
condition because the packaged resource is distributed
over double the number of objects, even though targeted
resource is distributed over the same number of objects.
This would be consistent with the results of (Fougnie et
al., 2010; Lee & Chun, 2001; Olson & Jiang, 2002) and
corresponds to an object benefit (Jiang et al., 2000) for
the together-N condition. Moreover, precision in the
separate condition is higher than in the together-2N
condition because the targeted resource is distributed
over half the number of objects, even though packaged

Figure 8. Orientation-color VSTM in a noisy-memory framework. (A) Feature resource consists of ‘‘packaged’’ resource, which gets

allocated to all objects, and ‘‘targeted’’ resource, which only gets allocated to objects for which that feature is relevant. (B)

Application to the conditions from Figure 1.
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resource is distributed over the same number of objects.
This is consistent with one comparison in Marshall and
Bays (2013) and with classic change detection results
(Olson & Jiang, 2002). However, it is inconsistent with
one comparison in (Marshall & Bays, 2013) that used a
condition in which two sequentially presented displays
differed by which feature was relevant (e.g., color had to
be remembered for the stimuli in the first display,
orientation for those in the second). Performance was
lower when the stimuli possessed an irrelevant feature in
addition to their relevant feature; the discrepancy with
our framework might be due to the fact that relevance
switched mid-trial, causing targeted resource to be
allocated to an irrelevant feature.

An aspect of VSTM that we have not addressed is
binding errors (Bays, 2016; Bays, Catalao, & Husain,
2009; Oberauer & Lin, 2017; Van den Berg et al., 2014;
Wheeler & Treisman, 2002): a feature might be
correctly remembered but at the wrong location. These
errors could already occur in single-feature VSTM.
They can be thought of as arising from the noisy
representation of location, with confusions more likely
when stimuli are closer together (Bays, 2016). In most
of the work presented here, set size was 4, with stimulus
locations being far apart and fixed across the experi-
ment. These design features are likely to minimize
binding errors. The exceptions were the separate and
together-2N conditions in Experiment 4, in which set
size was 8. We leave the study of potential binding
errors in these conditions for future work.

Taken together, we have shown that applying the
framework of noisy memories to questions regarding
multiple-feature VSTM brings along new techniques
(full psychometric curves over change magnitude for
stronger model tests; model-based separation of en-
coding and decision stage), confirms some long-
standing notions, offers a new perspective on others,
and introduces new questions.

Keywords: visual working memory, visual short-term
memory, objects, features, computational modeling,
change detection
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Appendix A: Derivation of decision
rules

Here we outline the derivation of the decision rules
(Step 2 in the Bayesian model) for Conditions A and B.
The rules for Conditions C and D are specified in the
main text.

Condition A: One feature dimension

In the model, observers compute the posterior
probability distribution p(Ljx,y) of change location L
given the measurement vectors x and y, and choose
the location for which this posterior is highest.
Denoting by a binary variable CL whether the change
occurred at the Lth location, we compute the posterior
as

p Ljx; yð Þ}p x; yjLð Þp Lð Þ
}p x; yjLð Þ
¼ p xL; yLjCL ¼ 1ð Þ

Y
i 6¼L

p xi; yijCi ¼ 0ð Þ

}
p xL; yLjCL ¼ 1ð Þ
p xL; yLjCL ¼ 0ð Þ :

In other words, the posterior probability that the
change occurred at the Lth location is proportional to
the likelihood ratio of change occurrence at that
location considered independently from all other
locations. This likelihood ratio is our decision variable
and denote it by dL:

dL [
p xL; yLjCL ¼ 1ð Þ
p xL; yLjCL ¼ 0ð Þ ð7Þ

We evaluate numerator and denominator by margin-
alizing over h, u, and in the case of CL ¼ 1, also D:

p xL; yLjCL ¼ 1ð Þ ¼
Z Z

p xLjhLð Þp yLjuLð

¼ hL þ DÞdhLdD

p xL; yLjCL ¼ 0ð Þ ¼
Z

p xLjhLð Þp yLjuL ¼ hLð ÞdhL

Using Equation 1, the end result is (Van den Berg et
al., 2012)

dL ¼
I0 jx;L

� �
I0 jy;L

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
x;L þ j2

y;L þ 2jx;Ljy;L cos xL � yLð Þ
q� �

ð8Þ
The maximum a posteriori observer will pick the
location L for which dL is highest.

Condition B: Two relevant feature dimensions

In Condition B, each object has orientation and
color, which are both relevant. On each trial, the
change happens either in orientation or in color, with
equal probabilities. Thus, the observer has to consider
the hypothesis that orientation has changed and color
has not, and the alternative hypothesis that color has
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changed and orientation has not. These hypotheses
have the same a priori probability (0.5). Thus,
Equation 7 for the decision variable changes to:

dL ¼
1

2

p xL;ori; yL;orijCL;ori ¼ 1
� �

p xL;col; yL;coljCL;col ¼ 0
� �

þ p xL;ori; yL;orijCL;ori ¼ 0
� �

p xL;col; yL;coljCL;col ¼ 1
� �

p xL;ori; yL;orijCL;ori ¼ 0
� �

p xL;col; yL;coljCL;col ¼ 0
� �

 !

This can be simplified to

dL ¼
1

2

p xL;ori; yL;orijCL;ori ¼ 1
� �
p xL;ori; yL;orijCL;ori ¼ 0
� �þ p xL;col; yL;coljCL;col ¼ 1

� �
p xL;col; yL;coljCL;col ¼ 0
� �

 !

¼ 1

2
dL;ori þ dL;col

� �
;

where

di;ori ¼
I0 ji;ori;x

� �
I0 ji;ori;y

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ji;ori;x

� �2 þ ji;ori;y

� �2 þ 2ji;ori;xji;ori;y cos xi;ori � yi;ori

� �q� �

and analogous for color. Again, the maximum a
posteriori observer will pick the location L for which dL
is highest.

Appendix B: Replication of
Experiment 2

We replicated Experiment 2 at a higher set size (N¼
8). Each display contained eight colored ellipses,
equally spaced around an imaginary circle. Perfor-
mance was similar between Conditions B and C (Figure
A1). The AIC fromModel 5/6 was higher than Model 3
(81 6 19). This is consistent with Experiment 2.

Figure A1. Replication of Experiment 2 with set size 8. Proportion correct as a function of change magnitude (five subjects), with

model fits (shaded areas: M 6 SEM). Performance was indistinguishable between Conditions B and C, in accordance with Model 5/6

but not with Model 3.
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